# Issue Embedder Action Sends issue comment text to an embeddings API so issue discussions can be stored in a vector lake. Intended to run from an `issue_comment` workflow and pick up the latest comment text for embedding. ## How it works - Reads issue body and comments via the GitHub API. - Builds a request payload using the issue body for `embed_text` and the latest comment for `store_text`. - POSTs the payload to the configured API URL with optional token auth. ## Inputs - `api_url` (optional): API endpoint. Default: `http://agents-api.servc-agents:3000` - `api_token` (optional): API token for authentication. - `route` (optional): API route. Default: `agent-lake` - `method` (optional): API method. Default: `embeddings_insert` - `debug` (optional): Enable debug logging. Default: `false` ## Example workflow ```yaml name: Send Tasks to Agent on: issue_comment: types: - created - edited jobs: agent-embed-issue: if: contains(github.event.comment.body, 'solution:') runs-on: ubuntu-latest permissions: contents: read issues: read steps: - name: Send task to embedding agent uses: https://git.yusufali.ca/actions/embed-issues@main env: GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} with: api_token: ${{ secrets.AGENT_TOKEN }} api_url: ${{ secrets.AGENT_API_URL }} debug: false ``` ## Notes - `GITHUB_TOKEN` is used to read issue comments. - `AGENT_API_URL` and `AGENT_TOKEN` are expected to be configured as repository secrets.